Thursday, 24 December 2015

TRANSISTORS AT A GLANCE

Transistors

The bipolar transistor was invented in 1947. From 1955 onwards transistors replaced vacuum tubes in computer designs, giving rise to the "second generation" of computers. Compared to vacuum tubes, transistors have many advantages: they are smaller, and require less power than vacuum tubes, so give off less heat. Silicon junction transistors were much more reliable than vacuum tubes and had longer, indefinite, service life. Transistorized computers could contain tens of thousands of binary logic circuits in a relatively compact space.
At the University of Manchester, a team under the leadership of Tom Kilburn designed and built a machine using the newly developedtransistors instead of valves. Their first transistorised computer and the first in the world, was operational by 1953, and a second version was completed there in April 1955. However, the machine did make use of valves to generate its 125 kHz clock waveforms and in the circuitry to read and write on its magnetic drum memory, so it was not the first completely transistorized computer. That distinction goes to the Harwell CADET of 1955, built by the electronics division of the Atomic Energy Research Establishment at Harwell.

Your brain contains around 100 billion cells called neurons—the tiny switches that let you think and remember things. Computerscontain billions of miniature "brain cells" as well. They're calledtransistors and they're made from silicon, a chemical element commonly found in sand. Transistors have revolutionized electronics since they were first invented over half a century ago by John Bardeen, Walter Brattain, and William Shockley. But what are they—and how do they work?

What does a transistor actually do?

A transistor is really simple—and really complex. Let's start with the simple part. A transistor is a miniature electronic component that can do two different jobs. It can work either as an amplifier or a switch:
The electronic components inside a pocket-style analog hearing aid.
  • When it works as an amplifier, it takes in a tiny electric current at one end (an input current) and produces a much bigger electric current (an output current) at the other. In other words, it's a kind of current booster. That comes in really useful in things like hearing aids, one of the first things people used transistors for. A hearing aid has a tiny microphone in it that picks upsounds from the world around you and turns them into fluctuating electric currents. These are fed into a transistor that boosts them and powers a tiny loudspeaker, so you hear a much louder version of the sounds around you. William Shockley, one of the inventors of the transistor, once explained transistor-amplifiers to a student in a more humorous way: "If you take a bale of hay and tie it to the tail of a mule and then strike a match and set the bale of hay on fire, and if you then compare the energy expended shortly thereafter by the mule with the energy expended by yourself in the striking of the match, you will understand the concept of amplification."
  • Transistors can also work as switches. A tiny electric current flowing through one part of a transistor can make a much bigger current flow through another part of it. In other words, the small current switches on the larger one. This is essentially how all computer chips work. For example, a memory chip contains hundreds of millions or even billions of transistors, each of which can be switched on or off individually. Since each transistor can be in two distinct states, it can store two different numbers, zero and one. With billions of transistors, a chip can store billions of zeros and ones, and almost as many ordinary numbers and letters (or characters, as we call them). More about this in a moment.
Photo: Compact hearing aids were among the first applications for transistors—and this one dates from about the late 1950s or 1960s. About the size of a pack of playing cards, it was designed to be worn in or on a jacket pocket. There's a microphone on the other side of the case that picks up ambient sounds. You can clearly see the four little back transistors inside, amplifying those sounds and then shooting them out to the little loudspeaker that sits in your ear.
The great thing about old-style machines was that you could take them apart to figure out how they worked. It was never too hard, with a bit of pushing and poking, to discover which bit did what and how one thing led to another. But electronics is entirely different. It's all about using electrons to control electricity. An electron is a minute particle inside an atom. It's so small, it weighs just under 0.000000000000000000000000000001 kg! The most advanced transistors work by controlling the movements of individual electrons, so you can imagine just how small they are. In a modern computer chip, the size of a fingernail, you'll probably find between 500 million and two billion separate transistors. There's no chance of taking a transistor apart to find out how it works, so we have to understand it with theory and imagination instead. First off, it helps if we know what a transistor is made from.

No comments:

Post a Comment